中文字幕网伦射乱中文-超清中文乱码字幕在线观看-亚洲v国产v欧美v久久久久久-久久性网-手机在线成人av-成人六区-国产人与zoxxxx另类一一-青青草国产久久精品-蜜桃av久久久一区二区三区麻豆-成人av一区二区免费播放-在线视频麻豆-www爱爱-成人免费看片视频-性欧美老肥妇喷水-五月99久久婷婷国产综合亚洲-亚洲最色-各种含道具高h调教1v1男男-91丨porny丨国产-国产精品无码专区在线观看不卡-大香伊人

American, Chinese scientists develop new catalyst to help harvest, store clean energy

Source: Xinhua| 2018-03-06 05:11:54|Editor: Mu Xuequan
Video PlayerClose

WASHINGTON, March 5 (Xinhua) -- American and Chinese scientists have synthesized a new, dual-atom catalyst to serve as a platform for artificial photosynthesis, a move that may help harvest and store solar energy more efficiently.

In a study reported on Monday in the Proceedings of the National Academy of Science, scientists displayed an iridium catalyst with only two active metal centers, which can directly harvest solar energy and store the energy in chemical bonds, similar to how photosynthesis is performed but with higher efficiencies and lower cost.

Dunwei Wang, Boston College Associate Professor of Chemistry and the paper's lead author, said, "It addresses the critical challenge that solar energy is intermittent," using the "atomically dispersed catalyst" featuring two atoms.

Researchers synthesized an iridium dinuclear heterogeneous catalyst in a facile photochemical way. They reported that the catalyst showed outstanding stability and high activity toward water oxidation, an essential process in natural and artificial photosynthesis.

According to researchers, challenges are that most active heterogeneous catalysts are often poorly defined in their atomic structures, which makes it difficult to evaluate the detailed mechanisms at the molecular level.

Heterogeneous catalysts, widely used in large-scale industrial chemical transformations, involve the form of catalysis where the phase of the catalyst differs from that of the reactants.

Wang said they managed to determine the smallest active and most durable heterogeneous catalyst unit for water oxidation, previously known only to be done for homogeneous catalysts, whose durability was poor.

They also performed X-ray experiments to determine the structure of the iridium catalyst at Lawrence Berkeley National Laboratory.

Wang said the team was surprised by the simplicity and durability of the catalyst, combined with the high activity toward the desired reaction of water oxidation.

Scientists from the University of California, Irvin; Yale, Tufts, and China's Tsinghua and Nanjing Universities also participated the research.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105091370185261